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Microscopic simulations are used to investigate the status of the stochastic theory of reaction-diffusion
systems based on master equation. It is shown that the validity of this theory can only be guaranteed over
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PACS number~s!: 05.401j, 05.901m, 47.20.Ky, 82.20.Wt

I. INTRODUCTION

The phenomenological theory of reaction-diffusion equa-
tions rests on the fundamental assumption of a clear-cut
separation between macroscopic behavior, as described by
the equations of chemical kinetics coupled to mass transfer,
and dynamical processes at the microscopic level. Each
event is considered to result from an average over all micro-
scopic characteristics. This lumping of all but the macro-
scopic degrees of freedom ignores the spontaneous devia-
tions from average behavior, thefluctuations. These
deviations are always present in a macroscopic system that,
because of the complexity of molecular motions, can be
viewed as a spontaneous generator of noise.

The theoretical analysis of fluctuations requires an en-
larged description in which information pertaining to micro-
scopic behavior is incorporated. Such an enlarged descrip-
tion is traditionally based on the theory of stochastic
processes@1,2#. The simplest approach is the Langevin for-
mulation of reactive systems where Gaussian random white
noise terms are added to the macroscopic evolution equa-
tions @3#. The amplitudes of these noise terms are directly
related to the macroscopic path through a fluctuation-
dissipation theorem, which guarantees that at equilibrium the
resulting probability density becomes equivalent to one of
the familiar Gibbs ensembles of equilibrium statistical phys-
ics @4–6#. The validity of this approach is thus directly re-
lated to the uniqueness of the solution of macroscopic equa-
tions. In particular, a Langevin description leads to a correct
stationary distribution only if the corresponding macroscopic
equations admit a single globally asymptotically stable at-
tractor @7#.

A more satisfactory approach is based on the master equa-
tion formulation of chemical systems, which gives a
‘‘mechanistic’’ point of view of what is going on at the mo-
lecular level@8,9#. Consider, for instance, an ideal isothermal
chemical system at mechanical equilibrium. For the sake of
clarity, we first focus on the description of chemical pro-
cesses alone, postponing until the next section the discussion
of the role of diffusion. The composition of the system can
only change through reactive collisions, which, because of
the existence of activation energies, are typically rare events
as compared to nonreactive ones. This suggests that one can
lump all the microscopic~position-momenta! degrees of
freedom and view the dynamics as a succession of jumps
corresponding to the change of composition through chemi-

cal reactions, interrupted bywaiting time intervals. During
these intervals the large number of nonreactive collisions
will give rise to a randomization and a loss of memory.
These remarks strongly suggest that the evolution of the sys-
tem can be represented by ajump Markov processin an
appropriate phase space. The probability distribution for the
total number of particlesUi of speciesi obeys then the mas-
ter equation@10#

d

dt
P~$Ui%;t !5 (

$Ui8%

W~$Ui8%u$Ui%!P~$Ui8%;t !, ~1!

where theW’s are transition probabilities per unit time. They
are proportional to the frequency of collisions between mol-
ecules of the constituents involved in each reaction and can
thus easily be constructed through combinatorial arguments
@1#. An important property of the transition probabilities is
their extensivity, which expresses the physically obvious fact
that the rate of a chemical process in a volumeV must be
proportional toV times a suitable function ofintensivevari-
ables.

The master equation~1! is particularly well suited for de-
scribing the statistical properties of well stirred reactive sys-
tems. The main advantage of such a global description lies in
its simplicity, which permits detailed analytical investiga-
tions. Its applicability to nonstirred media, however, remains
questionable even if one limits oneself to macroscopically
homogeneous systems. In fact, the global master equation
selects the very limited class of exceptionally large fluctua-
tions that appear at the level of the entire system, disregard-
ing important nonequilibrium features originated by local
fluctuations. A satisfactory approach must therefore include
the effects of local fluctuations as well.

This paper is devoted to the study of the statistical prop-
erties of dilute isothermal reactive systems evolving in an
unstirred medium. We shall tackle the subject from two
complementary standpoints: microscopic simulations of re-
active fluids and the master equation description of reaction-
diffusion systems, the former being so far the only available
method for testing the results of the latter.

The local formulation of the master equation will be laid
down in the next section where we review the main assump-
tions at the basis of this description. Section III is devoted to
the survey of the microscopic simulation of reactive fluids in
the Boltzmann limit. We start our comparative analysis by
considering in Sec. IV a simple chemical model that allows a

PHYSICAL REVIEW E DECEMBER 1996VOLUME 54, NUMBER 6

541063-651X/96/54~6!/6139~10!/$10.00 6139 © 1996 The American Physical Society



detailed discussion of the limit of validity of the reaction-
diffusion master equation. Section V is devoted to the study
of a three variable model that can exhibit multiple steady
state solutions. The main conclusions and perspectives are
presented in Sec. VI.

II. REACTION-DIFFUSION MASTER EQUATION

The basic lines of the master equation formulation of
reaction-diffusion systems can be summarized as follows
@1,11–14#. We subdivide the reaction volume into spatial
cells $DVr% and consider as variables the numbers of par-
ticles $Ui r% of speciesi51,2, . . . in these cells. We assume
as before that the set of variables$Ui r% defines a Markov
process. The random variables$Ui r% change as a result of
two processes: chemical reactions, which will be modeled as
before by a jump Markov process, and diffusion whereby a
particle may jump to an adjacent cell. The latter will be
assimilated to a random walk. The resulting probability dis-
tribution P($Ui r%;t) obeys the so-calledmultivariate master
equation:

d

dt
P~$Ui r%;t !

5 (
r ,$Ui r8 %

W~$Ui r8 %u$Ui r%!P~$Ui r8 %;t !

1(
i

D̃ i

2d(r ,l $~Ui r11!P~ . . . ,Ui r11,Ui r1l 21, . . . ;t !

2Ui rP~Ui r ;t !%. ~2!

The suml runs over the first nearest neighbors of the cell
r andD̃ i represents the mean jump frequency of speciesi . It
is related to Fick’s diffusion coefficient of the species by

Di5
l 2

2d
D̃i , ~3!

whered represents the space dimension andl is the charac-
teristic length of a cell:

DV5l d. ~4!

Note that again the transition probabilities are extensive
quantities proportional to the volumeDV of the cells.

Before discussing the general properties of the master
equation~2!, it is appropriate to review the conditions under
which it is expected to describe correctly realistic reaction-
diffusion systems. Beside the Markovian hypothesis, the
very basics of any stochastic theory of reactive fluids relies
on the fundamental assumption that the state of the system
can be completely specified in terms of a limited number of
macroscopic variables. For isothermal systems, these are just
the composition variables. The lumping of all microscopic
degrees of freedom except the composition variables can
only be justified in systems remaining permanently in a local
thermal equilibrium state, which in turn requires a ‘‘large’’
number of molecules per cell. Detailed numerical studies
show that a few hundred molecules are enough in most prac-

tical situations. The local equilibrium assumption is also a
necessary condition that allows one to approximate the ex-
tremely complex motion of molecules by a simple random
walk. This is a reasonable approximation provided the linear
dimensions of a cell remain at least of the order of the mean
free path, since otherwise the microscopic characteristics of
individual molecules, such as their velocity distribution func-
tion, must also be incorporated into the theory@15#. The cell
size, however, cannot be chosen arbitrarily large, even for
macroscopically homogeneous systems. In fact, the reaction-
diffusion master equation considers each cell as a perfectly
coherent entity, which in turn implies that the linear dimen-
sions of a cell must be smaller than the correlation length.
Now, the correlation length is at least equal to the reactive
mean free path, defined as the average distance traveled by a
particle before it undergoes a reactive collision. We therefore
arrive at the conclusion that the linear dimensions of a cell
should be typically of the order of the reactive mean free
path. We will have the opportunity to check the above intui-
tive arguments in Sec. IV devoted to microscopic simula-
tions of a simple isothermal chemical systems.

The master equation~2! provides an elegant and simple
generalization of reaction-diffusion equations. From a theo-
retical point of view, it has been shown that in the close
vicinity of a pitchfork bifurcation point its solution can be
cast into the exponential of a ‘‘stochastic potential,’’ which
turns out to be the Landau-Ginzburg potential familiar in
equilibrium critical phenomena@7#. Away from the bifurca-
tion point, it leads to the Langevin reaction-diffusion equa-
tions with the correct fluctuation spectrum. In more complex
situations, it can easily be studied numerically. Here, the
evolution of the system is viewed as a random walk in a
discrete phase space~space of ‘‘numbers of particles’’ of
different species! for which transitions occur at randomly
spaced time intervals. The process being Markovian leads to
an exponential distribution of waiting times@16#. From this
distribution and the transition probabilities associated to each
elementary chemical step, explicit realizations of the process
can be constructed, along the lines of a Monte Carlo type of
simulation first developed by Gillespie@17,18#. Similar tech-
niques are described in Refs.@19,20#.

In view of the above results, one is tempted to consider
the reaction-diffusion master equation as the starting point of
a statistical mechanics of reactive systems. The validity of
this equation, however, rests mainly on arguments that, al-
though highly plausible, are nevertheless heuristic and need
to be carefully tested. Sufficiently precise experimental data
to clarify the situation do not exist, to our knowledge. Mi-
croscopic simulations remain therefore the most promising
tool to shed some light on this important issue.

III. MICROSCOPIC SIMULATION OF REACTIVE FLUIDS

In this paper, we shall be mainly concerned with the mi-
croscopic simulation of reactive fluids capable of exhibiting
nonequilibrium transitions. In this respect, we have to face
some basic difficulties that are directly related to the very
nature of chemical dynamics. A first problem arises in con-
nection with the validity of the macroscopic rate equations
describing the time evolution of the composition variables in
dilute ~ideal! mixtures. This implies that one needs to have
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‘‘enough’’ elastic collisions between consecutive reactive
collisions in order to ensure mechanical and thermal equilib-
rium. As a consequence, only a fraction of the computing
time will contribute effectively to the evolution of the sys-
tem, which results in much wasted bookkeeping with a cor-
responding waste of CPU time. A second problem is related
to the fact that chemical time scalestc , such as, for ex-
ample, the period of a limit cycle in an oscillating system,
are frequently in the macroscopic range. To get reliable sta-
tistics, one needs to run the corresponding microscopic simu-
lation over an amount of time several times larger thantc .
This again implies an extremely large amount of running
time.

To cope with these difficulties, one is forced to simplify
as much as possible both the Newtonian and the chemical
dynamics. This can be done by limiting the simulation to
hard sphere dynamics and by considering dilute mixtures in
the Boltzmann limit. In this respect, a legitimate question is
whether it is possible to set up a simple algorithm, specially
designed for Boltzmann dynamics, instead of using the exact
Newtonian dynamics. This question was answered positively
by Bird @21#, who proposed an algorithm known asdirect
simulation Monte Carlo method~DSMC!. The original pur-
pose of the method was to deal with problems where the use
of the standard hydrodynamic descriptions becomes ques-
tionable, such as the computation of high Knudsen number
flows of a rarefied gas past an object~e.g., high altitude
flight!. Bird’s method has become popular since it is in ex-
cellent agreement with experimental and molecular dynamic
data. Its basic steps can be summarized as follows@22#.

As with usual molecular dynamic methods, the state of
the system is the set of particle positions and velocities,
$r i ,vi%, i51, . . . ,N whereN is the total number of particles.
The evolution is decomposed in time stepsDt, typically a
fraction of the mean collision time for a particle. Within a
time step, the free flight motion and the particle interactions
~collisions! are assumed to be decoupled. The free flight mo-
tion for each particle i is computed as
r i(t1Dt)5r i(t)1vi(t)Dt, along with the appropriate
boundary conditions. After all the particles have been
moved, they are sorted into spatial cells, typically a fraction
of a mean free path in length. A set of representative colli-
sions, for the time stepDt, is chosen in each cell. For each
selected pair a random impact parameter is generated and the
collision is performed. After the collision process has been
completed in all cells, the particles are moved according to
their updated velocities and the procedure is repeated as be-
fore. Note that very recently Bird proposed several modifi-
cations to DSMC that improve the performance and the flex-
ibility of his original algorithm@23#.

The major hypothesis in Bird’s algorithm is that the cells
are assumed to be perfectly homogeneous; i.e., all particles
within a cell are considered to be potential collision partners,
regardless of their exact positions. This assumption simpli-
fies considerably the dynamics and allows the algorithm to
be up to three orders of magnitude faster than the corre-
sponding exact hard sphere dynamics. On the other hand, it
also raises questions as to the reliability of the algorithm.

From a macroscopic point of view, extensive use of
DSMC by Bird and others, in a variety of problems dealing
with nonequilibrium gas dynamics, has always shown per-

fect agreement with experimental data@21,24,25#. For ex-
ample, it correctly yields the density profile of a relatively
high Mach number (.2) shock wave@26#. It also repro-
duces correctly the data obtained through hard sphere mo-
lecular dynamics in extremely strong shock wave conditions
~Mach number.100), a domain far beyond the validity of
Navier-Stokes equations@27#.

At the microscopic level, DSMC have also been used to
study the behavior of fluctuation spectra in dilute gas sub-
jected to strong nonequilibrium constraints, both for systems
under temperature gradient@28,29# and velocity gradient
@30# ~shear!. The results were shown to be in very good
agreement with those obtained by the Landau-Lifshitz fluc-
tuating hydrodynamics@31#, whose validity is now well es-
tablished@32–34#. We can therefore conclude that the Bird
algorithm reproduces perfectly both the macroscopic behav-
ior and the fluctuation spectrum of dilute gases, even under
severe nonequilibrium regimes.

Note finally that there are other techniques, such as the
lattice gas cellular automata~LGCA! or the lattice Boltz-
mann method, that allow the simulation of reactive fluids
@35,36#. So far, however, it is not clear whether these meth-
ods contain more information than the macroscopic equa-
tions, at least in nonequilibrium systems. It has only recently
been shown that LGCA reproduces correctly the fluctuation
spectrum in equilibrium systems@37,38#.

We next define what we mean by ‘‘reactive hard sphere
collisions’’ @39,40#. We assign to each species a ‘‘color.’’ A
reactive collision occurs if the colliding particles have
‘‘enough’’ energy, i.e., if their relative kinetic energy ex-
ceeds some threshold related to the activation energy of the
reaction. If this is the case, then the colors of the particles are
changed, according to the chemical step under consideration.
This procedure, however, leads to a continuous energy trans-
fer from reactants to products that induce a deformation of
the Maxwell-Boltzmann distribution and can thus modify
significantly the values of the rate constants@41,42#. To
avoid these nonequilibrium effects, the frequency of reactive
collisions must be significantly smaller than the frequency of
elastic collisions, entailing important waste of CPU time.
One way to overcome this difficulty is to further simplify the
reactive collision rules by the following procedure. Let us
consider a typical bimolecular chemical step:

A1B→
k
C1D ~5!

with

k5n expH 2
E

kBT
J [nkA , ~6!

wheren is the collision frequency. After a collision between
two particlesA and B has occurred, we choose randomly
kA% of the collisions to be reactive, wherekA stands for the
Arrhenius factor defined in Eq.~6!. Obviously, this proce-
dure avoids the deformation of the Maxwell-Boltzmann dis-
tribution, since it does not involve any systematic energy
transfer between reactants and products. It is, however, re-
stricted to isothermal chemical systems.
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IV. MICROSCOPIC SIMULATION OF AN EXACTLY
SOLUBLE MODEL

Our main objective in this paper is to check the validity of
the reaction-diffusion master equation in the vicinity of a
bifurcation point, through a microscopic simulation of a rep-
resentative chemical model. Testing phenomenological theo-
ries through microscopic simulations is not always easy, as it
involves a number of pitfalls one should be aware of before
drawing any definitive conclusions. This is especially true
for reactive systems so that it is instructive to concentrate
first on the following simple model, which can be solved
exactly @43,44#:

S1U→
k1
U1U, ~7a!

S1U

k3

k2
S1S, ~7b!

where the concentration ofS particles~hereafter referred to
as ‘‘solvent’’ particles! is supposed to remain constant. This
can be achieved by introducing one more participant, say
moleculesA. Every time anS particle is created~destroyed!
in a collision, anS (A) particle is chosen at random in the
same collisional cell and replaced by anA (S) particle. Since
the A molecules do not participate in any reaction, they
merely constitute a reservoir of particles maintaining the sol-
vent concentration fixed@40#. We further restrict ourselves to
a one-dimensional system with periodic boundary condi-
tions, i.e., a long thin torus.

We first consider the master equation formulation. Divid-
ing the system lengthL into Nc cells and following the ar-
guments developed in Sec. II, one can write

d

dt
P~$Ui%;t !5(

i51

Nc

@y~Ui21!P~ . . . ,Ui21, . . . ;t !2y~Ui !P~$Ui%;t !1m~Ui11!P~ . . . ,Ui11, . . . ;t !2m~Ui !P~$Ui%;t !#

1
D̃

2(
i51

Nc

(
l 561

@~Ui11!P~ . . . ,Ui11,Ui1l 21, . . . ;t !2~Ui !P~$Ui%;t !# ~8a!

with

y~Ui !5k1sUi1k3
s~S21!

2
, m~Ui !5k2sUi , ~8b!

wheres andS represent the mole fraction and the number of
solvent particles per cell, respectively, and the factor 1/2 in
Eq. ~8b! takes into account the fact that theS-S reaction
involves a pair of the same particles. Owing to the periodic
boundary conditions,

UNc115U1 , U05UNc
. ~9!

The master equation~8! admits a stationary solution pro-
vided k2.k1 since otherwise the random variables$Ui% be-
come unboundedly large ast→`. In this case, the stationary
probability distribution possesses translational symmetry,
i.e., Pst(Ui5a,Ui1k5b)5Pst(Uj5a,Uj1k5b), ; i , j ,k.
For instance, the average number ofU particles per cell
reads

^Ui&5
k3~S21!

2~k22k1!
[^U&, ; i ~10!

The static spatial correlation function is readily found to
obey

D̃

2
~gi11,j1gi21,j22gi, j !2s~k22k1!gi , j52k1s^U&d i , j

Kr ,

i , j51,2 . . . ,Nc , ~11!

where we have defined

gi , j[^dUidUj&2^U&d i ; j
Kr . ~12!

As this equation is subjected to periodic boundary condi-
tions, Eq.~9!, it can be solved through lattice Fourier trans-
form. After some calculation, one finds

gi , j5
2k1s^U&a

D̃~a221!~aNc21!
@a u i2 j u1aNc2u i2 j u#,

u i2 j u50,1 . . . ,Nc21, ~13!

where we have set

a5~11b/D̃ !1A~11b/D̃ !221 ~14a!

with

b5s~k22k1!. ~14b!

For the microscopic simulation, we consider a system
made of an assembly ofN542 000 hard spheres of diameter
d confined in a rectangular box ofL53780d long with a
number densityn5531023 particles perd3 ~the mean free
pathl is about 45d). All the particles have the same mass
and diameter, regardless of their chemical~color! identity.
For practical convenience, lengths and masses are scaled by
the sphere diameterd and the particle massm, respectively;
i.e., we taked5m51. Similarly, by an appropriate scaling
of time and velocities, the temperature and thermal velocity
are set to unity. In these units, the diffusion coefficient
D529.92 and the collision frequencyn50.025. The system
is divided into 84 collisional cells of 45d long, each contain-
ing an average of 500 particles~the cell volume is of about
1.1l3). The other parameters are chosen as follows:
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k150.1n, k250.15n, k350.4n, s50.1. ~15!

A time average over 106 collisions per particle~CPP! was
performed to measure the spatial static correlation function,
after the stationary state had been reached~about 105 CPP!.
The result is presented in Fig. 1, together with that obtained
from the master equation, Eq.~13!. The agreement is defi-
nitely not good. Note that traditional hard-disk and hard-
sphere molecular dynamics~MD! simulations have led in the
past to basically the same type of results@45#.

Detailed analysis shows that the origin of the observed
discrepancy is closely related to the way the solvent concen-
tration is kept constant in the microscopic simulation. As
already underlined, each time a solvent particleS is created
~destroyed! in a collision with the other species anS (A)
particle is chosen at random in the same collisional cell and
replaced by anA (S) particle. This procedure ensures the
conservation of solvent particles in reactive collisions, but
does not prevent them from moving freely from cell to cell.
In other words, the number of solvent particles in a cell
fluctuates, but the fluctuations arise only because of diffu-
sion. The effect is negligibly small in macroscopic systems,
but not in microscopic simulations where the number of par-
ticles per cell is generally quite small. For instance, in our
case the average number of solvent particles per cell is only
50.

To check the validity of the above arguments, we consider
once more the model Eq.~7!, but now we allow the solvent
particles to diffuse as well. The corresponding master equa-
tion proves to be much more difficult to handle analytically,
mainly because the transition probabilities are now nonlinear
functions of the state variables$Ui ,Si%. It can nevertheless
be solved numerically and the results are shown in Fig. 2,
where a much better agreement with the microscopic results
is observed. Still, the agreement is not totally satisfactory. In
particular, near the origin the discrepancy is about 9%, well
above the expected statistical errors(4%). Wenote that such
a relatively small discrepancy would be quite difficult to de-
tect through hard sphere molecular dynamic simulations,
since here the statistical errors associated with the measure-
ment of fluctuations can hardly be lowered below 8% within
a reasonable CPU time of present day computers.

The origin of this last discrepancy is deeper and, in a way,
more difficult to understand than the previous one. Neverthe-
less, the simplicity of the model together with the flexibility
of the Bird algorithm leads to a complete clarification of the
problem. As already stated in Sec. II, the linear dimensions
of a cell in the reaction-diffusion master equation cannot be
chosen arbitrarily. Too large a cell size violates the cell sta-
tistical homogeneity assumptions, whereas too small a cell
size may compromise the separability of reaction and diffu-
sion viewed as elementary processes. Intuitive arguments,
developed in Section II, lead to the conclusion that the cell
sizes should be typically of the order of the reactive mean
free path. In other words, the reaction-diffusion master equa-
tion cannot probe correctly processes arising on a scale
smaller than the reactive mean free path. For the parameter
values we have chosen, the largest kinetic constantk350.4,
so that the reactive mean free path exceeds necessarily
2.5l, wherel denotes the usual ‘‘elastic’’ mean free path.

To check the above intuitive arguments, we consider our
microscopic simulation, with the same number of collisional
cells as before, but now we divide the system into 28 ‘‘sta-
tistical’’ cells; i.e., we group the cells three by three and
measure the statistical properties of the system over these
enlarged cells. Similarly, we solve numerically the master
equation divided also into 28 cells. The results are depicted
in Fig. 3, which now shows perfect agreement. Furthermore,
a careful comparison of Fig. 2 with Fig. 3 reveals that the
correlation functions corresponding to the master equation
are the same for both cases. In other words, the system re-
mains statistically homogeneous over length scales smaller
than the reactive mean free path. Obviously, this behavior
holds only at the level of the master equation formulation
and breaks down in a more refined description where the
velocity distribution of the chemicals is taken into account as
well.

V. MICROSCOPIC SIMULATION OF A MODEL
CONTAINING A PITCHFORK BIFURCATION

Simple chemical models exhibiting complex behavior,
such as the Brusselator or the Schlo¨gl model, involve trimo-
lecular collisions@1,2#. The Bird algorithm, however, is re-
stricted to binary collisions only, i.e., to second-order chemi-

FIG. 1. Spatial correlation functiongi j , Eq. ~12!, as a function
of u i2 j u. The solid curve corresponds to the solution of the master
equation, Eq.~13!, whereas the squares are obtained through a mi-
croscopic simulation based on Bird’s algorithm. The estimated sta-
tistical errors are less than 4%. The parameters are given in Eq.
~15!.

FIG. 2. Spatial correlation functiongi j , Eq. ~12!, as a function
of u i2 j u. The solid curve corresponds to the numerical solution of
the master equation, Eq.~8!, where the diffusion of solvent particles
have has been included, whereas the squares are obtained through a
microscopic simulation based on Bird’s algorithm. The parameters
are given in Eq.~15!.
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cal reactions@46#. It has been shown that the trimolecular
step can be approximated by a pair of bimolecular steps in-
volving different time scales, so that an adiabatic elimination
of a fast variable leads to an effective trimolecular step@47#.
Nevertheless, such a scheme is inappropriate for microscopic
simulation because the species represented by the slow vari-
ables undergo far fewer reactive collisions per unit time than
those represented by fast variables. We thus look here for a
chemical model satisfying the following three constraints:~i!
it consists of binary collisions only;~ii ! it has no significant
separation of time scales;~iii ! it involves as few reactants as
possible. As was shown in Ref.@48#, the above requirements
are fully satisfied by the following chemical model:

U1W→
k1
V1W, ~16a!

V1V

k22

k2
W1S, ~16b!

V1S→
k3
S1S, ~16c!

where the concentration of theS particles is supposed to
remain constant. The reactants are confined in a long thin
tube, laterally in contact with a ‘‘reservoir’’ with which it
can exchange particles through a semipermeable membrane.
The reactor thus operates effectively as a one-dimensional
system. Note that laboratory reactors dealing with unstirred
systems are quite similar to the one we just described
@49,50#.

The macroscopic rate equations corresponding to the
model ~16! read

du

dt
52k1uw1au~uf2u!,1Du

]2

]x2
u , ~17a!

dv
dt

5k1uw22~k2v
22k22ws!2k3vs1av~v f2v !

1Dv

]2

]x2
v, ~17b!

dw

dt
5k2v

22k22ws1Dw

]2

]x2
w, ~17c!

whereu, v, w, ands are the mole fractions ofU, V,W, and
S, respectively;k6 i are the rate constants of theith reaction;
au andav are the transfer coefficients~feed rate! of U and

V with the reservoir;Du , Dv , and Dw are the diffusion
coefficients; anduf , v f are the mole fractions ofU andV in
the reservoir~feed mole fractions!, respectively. The system
is assumed impermeable toW.

The transfer coefficient of a species depends on the diffu-
sion coefficient of that species as well as on the property of
the membrane separating the system with the reservoir. For
simplicity, in our microscopic simulation we shall assign to
all of the particles the same mass and sphere diameter, re-
gardless of their chemical identity. This implies that the dif-
fusion coefficients, and consequently the transfer coeffi-
cients, are equal:

Du5Dv5Dw[D, ~18a!

au5av[a. ~18b!

For certain ranges of parameter values, the macroscopic
equations~17! can admit multiple steady states and limit-
cycle oscillations. In this paper we concentrate on a possible
occurrence of a pitchfork bifurcation. We first note that the
stationary state mole fractions obey the following relations:

ws5
k2
skm

vs
2 , us5

a

k1ws1a
uf , ~19a!

k1k2~k1a!vs
32ak1k2~uf1v f !vs

21akm~k1a!vs2a2kmv f

50, ~19b!

where we have used the condition~18! and set

k5k3s, km5k22s. ~20!

As is well known, the general solution of the cubic equation
~19b! can be entirely described in terms of two parameters
only ~see, for example,@51#!. Thus, without loss of general-
ity, we are allowed to impose a certain number of suitable
relations among the various parameters of the problem. One
guideline stems from the fact that at a pitchfork bifurcation
point the cubic equation~19b! must admit a triple root. On
the other hand, the stationary state mole fractions of the
chemically active components, and that of solvent molecules,
should not be significantly different from each other for, oth-
erwise, the microscopic simulation of the model will become
highly inefficient.

Keeping the above comments in mind, we find after some
algebra that if we set

k5
1

3
~uf1v f !A2a

k1k2
km

~uf1v f !
~uf22v f !

2a ~21!

then Eq.~19b! reduces to the following simple form:

~vs2vs
~1!!31

4a

~uf1v f !
km
k1k2

~v f2uf /8!~vs2vs
~1!!50,

~22!

where we have introduced the ‘‘reference’’ stationary state

vs
~1!5

1

3
~uf1v f !

a

k1a
. ~23!

FIG. 3. Same as in Fig. 2, except that here the statistics is taken
over enlarged cells of about 3 mean free paths long.
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As can be seen, forv f.uf /8 the stationary solution is
unique, i.e.,vs5vs

(1) , whereas forv f,uf /8 one has three
stationary solutions, showing clearly that the system under-
goes a bifurcation atv f5uf /8. More detailed analysis shows
that the latter corresponds to a pitchfork bifurcation point.
This is illustrated in Fig. 4, where the stability diagram for
the variableu is depicted. The parameterd in this figure
represents the ‘‘distance’’ from the bifurcation point, defined
as

v f5
uf
8

1d . ~24!

The other parameters are set to

k15n, k25n/2, km5n/26, uf51/4, a50.28n,
~25!

wheren represents the collision frequency. Note that in writ-
ing the relation ~21! we have implicitly assumed that
uf22v f.0, which is clearly satisfied beyond (d,0) and in
the vicinity of the bifurcation point,d'0.

We first consider the stochastic simulation of the model
~16!, for which we can write a reaction-diffusion master
equation similar to Eq.~8!, with periodic boundary condi-
tions allowing theS particles to diffuse as well. We used,
defined in Eq.~24!, as the control parameter and set the
values of the other parameters according to Eq.~25!. Long
before the bifurcation point, the dynamics can be linearized
around the reference state so that the behavior of the system
is basically the same as in the case of the model~7!. As we
move towards the bifurcation point,d→0, we observe a dra-
matic increase in the fluctuation lifetime, with a correspond-
ing increase of their amplitude. Detailed analysis shows that
the local fluctuations exhibit markedly non-Gaussian behav-
ior for values ofd ranging from about 1022 to 21022. The
associated probability distribution, however, remains always
unimodal, regardless of the value ofd. This behavior seems
to indicate that the nonequilibrium transition associated to
pitchfork bifurcations is probably destroyed in a one-
dimensional system. The full discussion of this problem,
however, is beyond the scope of the present paper and will
be reported elsewhere.

We next concentrate on the microscopic simulation of the
model~16!. In order to carry out a microscopic modeling of
the transfer process with the reservoir, we introduce two
more pairs of reactions:

S1S

a2

a1
S1U, ~26a!

S1S

b2

b1
S1V. ~26b!

The forward reaction corresponds to inflow and the reverse
reaction to outflow;a6 andb6 are the fractions of reactive
collisions for these two reactions. Furthermore, anS-S reac-
tion can result in the production of eitherU or V molecules.
The fraction of ‘‘reactive’’ S-S collisions resulting in the
production of aU molecule isuf /(uf1v f) and the fraction
of ‘‘reactive’’ collisions resulting in the production of aV
molecule is then justv f /(uf1v f). It can be easily checked
that the reactions~26! lead indeed to the correct macroscopic
transfer terms, provided we set

a15
2auf
s2

, b15
2av f
s2

, a25b25
a

s
. ~27!

Note that the factor 2 in the above relations fora1 andb1 is
related to the fact that the forward reactions~26! involve a
pair of the same molecules.

One last problem remains, which arises whenever the
concentration of some of the species has to be kept constant
all along the simulation. For the model~16!, this is the case
of the S particles that undergo reactive collisions with the
other species and participate, in addition, in reactions de-
signed to mimic the exchange of particles with the reservoir.
As already discussed in the previous section, this can be
achieved by introducing one more participant, say molecules
A. Every time anS particle is created~destroyed! in a colli-
sion, anS(A) particle is chosen at random in the same col-
lisional cell and replaced by anA(S) particle. Since theA
molecules do not participate in any reaction, they merely
constitute a reservoir of particles maintaining theS mole
fraction fixed. We note that the simulation procedure is com-
pletely specified in terms of kinetic constants, transfer rate
and the mole fraction ofS particles.

For the microscopic simulation, we consider the same ba-
sic parameters as those chosen for the simple model Eq.~7!,
i.e.,N542 000 hard spheres of diameterd, L53780d, and
n5531023 particles perd3. We also use the same scaling
as before, so that the diffusion coefficientD529.92 and the
collision frequencyn50.025, in system units. The system is
divided into 84 collisional cells, of about 1 mean free path
long, and statistics are collected over each such cell as well
as over groups of 2, 4, and 7 cells.

We first consider positive values ofd, i.e., before the
bifurcation point and run the simulation for two different
values of the bifurcation parameter:d51022 and
d5331023. In both cases, the system exhibits significant
long life fluctuations so that to lower the statistical errors
below 8% in the evaluation of the correlation functions, we
had to run the simulation about 5 times longer than in the
case of model~7!. With the parameter values~25!, the reac-
tive mean free path is close to 2l. According to our previous
analysis~cf. Sec. IV!, the cell size in the master equation
formulation must also be set to about 2l. On the other hand,
given the close vicinity of the bifurcation point, the system
exhibits long range spatial correlation so that larger cell sizes
should also be allowed. This is demonstrated in Fig. 5 where

FIG. 4. Stability diagram for the model~16!. d is defined in Eq.
~24! and the parameters are given in Eq.~25!.
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the spatial correlation function, evaluated for groups of 4
cells ~about 4l), is depicted, which indeed shows quantita-
tive agreement with results obtained from the master equa-
tion. The agreement, however, becomes gradually less good
as we consider larger cell sizes. Figure 6 illustrates this fact,
where the master equation results, obtained for groups of 7
cells, are compared with the corresponding results of the
microscopic simulations. The agreement is indeed less good,
the discrepancy exceeding the estimate statistical errors
~8%!. Again this result seems to indicate the destruction of
the pitchfork bifurcation in a one-dimensional system.

We next consider negative values ofd, i.e., above the
bifurcation point. Here again, the static correlation functions
show quantitative agreement with master equation predic-
tions. Furthermore, the probability distribution associated to
local composition variables remains unimodal. This is illus-
trated in Fig. 7 ford52331023, where the probability dis-
tributions of theU variable, sampled over enlarged cells of
about 4 mean free paths long, are depicted. Besides the mi-
croscopic and the reaction-diffusion master equation results,
we have also reported the probability distribution obtain
from the ‘‘global’’ master equation. The latter reflects the
behavior of a zero-dimensional system, containing the same
number of particles as the sample cells we used in the mi-
croscopic simulations, i.e., 2000 particles. The probability
distributions for both the reaction-diffusion master equation

and the microscopic simulation remain unimodal, in perfect
quantitative agreement with each other. On the contrary, the
global master equation leads to a bimodal probability distri-
bution, each of the maximum being centered around stable
stationary solutions of the macroscopic equations. This ma-
jor discrepancy is in part due to the pathological properties
of one-dimensional systems. It nevertheless underlines the
inadequacy of a global description of unstirred media.

VI. CONCLUDING REMARKS

The main purpose of this work was to use microscopic
simulations of chemical systems to study the limit of validity
of the stochastic formulation of reaction-diffusion systems
based on the master equation. Contrary to the Langevin ap-
proach, the master equation formulation provides a mecha-
nistic view of the dynamics at the molecular level. The state
variables are the number of particles of chemical compo-
nents, which are sampled in spatial cells whose linear dimen-
sion l is considered as an adjustable parameter. Each cell is
assumed to be perfectly homogeneous; i.e., all particles
within it are considered to be candidate partners for a reac-
tive collision, regardless of their exact positions. Within each
cell, the dynamics is decomposed in two independent pro-
cesses: reaction and diffusion, which are modeled as a birth
and death process and random walk, respectively.

The validity of the above stochastic formulation rests
upon an adequate choice ofl : Too large a cell size violates
the cell statistical homogeneity assumptions, whereas too
small a cell size may compromise the separability of reaction
and diffusion viewed as independent elementary processes.
In the absence of any further information as to the range of
spatial correlations, the linear dimensions of a cell must re-
main of the order of the reactive mean free path, defined as
the average distance traveled by a sample particle between
two reactive collisions. In fact, expanding the reaction-
diffusion master equation in the inverse power ofl , al-
though mathematically correct, may lead to unphysical re-
sults contradicting the macroscopic reaction-diffusion
equations@52#.

After analyzing in detail the statistical properties of a
simple model, we have next considered a more complex

FIG. 6. Same as in the Fig. 5, except that here the statistics is
taken over enlarged cells of about 7 mean free paths long.

FIG. 7. Probability distribution of theU variable for the model
~16! with d52331023. The solid curve corresponds to results of
the master equation whereas the circles are obtained through a mi-
croscopic simulation over enlarged cells of about 4 mean free paths
long. The dashed curve represents the probability distribution cor-
responding to the global master equation with 2000 particles. The
other parameters are given in Eq.~25!.

FIG. 5. Spatial correlation functiongi j , Eq. ~12!, as a function
of u i2 j u for the model~16!. The solid and the dashed curves cor-
respond to the numerical solution of the master equation for
d5331023 and d51022, respectively. The circles are obtained
through the corresponding microscopic simulation based on Bird’s
algorithm. The statistics is taken over enlarged cells of about 4
mean free paths long. The parameters are given in Eq.~25!.
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model that contains a pitchfork bifurcation. This model al-
lows one to check the validity of the reaction-diffusion mas-
ter equation in the immediate vicinity of the bifurcation
point. Quantitative agreement was demonstrated both before
and after the bifurcation point. We thus can conclude that the
reaction-diffusion master equation can be considered as the
starting point of a statistical mechanics of dilute reactive sys-
tems.
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